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Stratification-induced lateral dispersion of a
density anomaly
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Department of Mathematical Sciences, Loughborough University, LE11 3TU, UK

(Received 24 March 1997 and in revised form 9 July 1997)

When a small amount of marked solute is released into a stratified fluid, there is
lateral dispersion of the marked solute and a larger lateral dispersion of any density
anomaly. The method of moments is used to calculate the two dispersion coefficients.
The excess dispersion for the density is shown to be proportional to the fractional
density decrease from the bed to the free surface and to the cube of the water depth,
and inversely proportional to the vertical mixing for lateral momentum. For weak
turbulent mixing the stratification-induced lateral dispersion for the density anomaly
can be several orders of magnitude greater than the lateral turbulent mixing for
marked solute

1. Introduction

In a lecture, W. R. Geyer pointed out that in the Hudson estuary off New York,
the salinity disturbance from a hot fresh outfall is observed to spread very much
more rapidly than the associated temperature disturbance. This totally disagreed with
model calculations that I had given (Smith 1978a,b) which predicted that in well-mixed
estuaries the dispersion processes for perturbations to the salinity or temperature are
the same because the two constituents experience the same turbulent mixing in the
same buoyancy-perturbed flow. Since the Hudson is moderately stratified (Nepf &
Geyer 1996; Geyer & Nepf 1997), there was a reason for the major disagreement
between Geyer’s observations and my calculations. The purpose of this short paper is
to make that reason quantitative by calculating the stratification-induced difference
D∗ between the lateral dispersion coefficients for different constituents.

The physical basis of the calculations is a distinction between the dispersion of
marked particles and the dispersion of a density anomaly. Vertical displacements in
a stratified fluid allow density adjustments remote from any discharged solute. For
the Hudson estuary, the stratification is principally associated with salinity. Thus,
a localized heat input would be dispersed at the rate for marked particles. If the
associated salinity input were isotopically distinct from the background stratification,
then the isotopically marked salinity would likewise spread at the rate for marked
particles. However, if the salinity input is indistinguishable from the background
salinity, then the salinity disturbance would appear to disperse at the larger rate
associated with the density adjustment. For the Hudson the difference between the
two dispersion rates is found to be extremely large.
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2. Perturbation equations
It is assumed that, prior to any discharge, there is water with constant depth H

and stratified density ρ0(1 + ρ′(z)). The Boussinesq approximation will be made, in
which the large magnitude of the gravitational acceleration g allows changes in weight
gρ0ρ

′(z) to be dynamically significant even though the density varies by only a very
small fraction ρ′(z) relative to the the reference density ρ0. With the sign convention
of the z-coordinate increasing upwards, gravitational stability requires that ∂zρ

′ 6 0.
Perturbations to the process whereby the background stratification is maintained will
be ignored. Also, it will be assumed that the perturbations have large length-to-width
ratio, so that in a suitable moving frame of reference the longitudinal x-structure can
be ignored. A quasi-laminar turbulence model will be used with eddy viscosities ν2,
ν3 and eddy diffusivities κ2, κ3 in the transverse and vertical directions.

The perturbation quantities associated with a small discharge of marked solute will
be indicated by lower-case variables. The perturbation velocity (0, v(y, z, t), w(y, z, t)),
pressure ρ0p(y, z, t), marked particle concentration c(y, z, t) and density ρ0δ(y, z, t)
satisfy the water volume, transverse momentum, vertical momentum, diffusion and
density perturbation equations:

∂yv + ∂zw = ∂tq , (2.1)

∂tv + ∂yp− ∂y(ν2∂yv)− ∂z(ν3∂zv) = ∂tm2 , (2.2)

∂tw + gδ + ∂zp− ∂y(ν2∂yw)− ∂z(ν3∂zw) = ∂tm3 , (2.3)

∂tc− ∂y(κ2∂yc)− ∂z(κ3∂zc) = ∂tγ , (2.4)

∂tδ + w∂zρ
′ = α∂tc− ρ′∂tq . (2.5)

The source terms represent transient fluxes of volume ∂tq(y, z, t), lateral momentum
∂tm2(y, z, t), vertical momentum ∂tm3(y, z, t), marked solute ∂tγ(y, z, t) and a linear
relationship between concentration and density excess. The sign of the density co-
efficient α in equation (2.5) depends upon whether the marked solute increases or
decreases the density (salt or temperature). Perturbations to the eddy viscosities and
diffusivities (together with turbulence modelling equations for those perturbations)
have been ignored.

The discharge can cause a small vertical displacement ζ(y, t) of the free surface.
At the displaced free surface there is no vertical separation between that surface and
the water, zero tangential stress, zero normal stress and zero loss of marked solute.
For small-amplitude disturbances, these boundary conditions can be projected to the
undisturbed surface position:

w − ∂tζ = 0
ν3(∂zv + ∂yw) = 0
−p+ gζ + 2ν3∂zw = 0
κ3∂zc = 0

 on z = H . (2.6)

At the flat, horizontal bed there is zero vertical flow, no slip, and zero normal flux of
marked solute:

w = 0
v = 0
κ3∂zc = 0

 on z = 0 . (2.7)
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Equations (2.1)–(2.7) are the equations and boundary conditions for small-amplitude
internal or surface waves with the inclusion of viscosity, diffusion and source terms.

3. Lateral moments
Despite linearity and the numerous other simplifications, the strongly coupled

system of equations (2.1)–(2.7) does not permit explicit solution. Following the now
classical shear dispersion calculations of Aris (1956), any fine details of the y-
dependence are sacrificed by our confining attention to the first few lateral moments:

c(n)(z, t) =

∫ ∞
−∞
c(y, z, t)yndy, n = 0, 1, 2, . . . . (3.1)

The moments of the volume, momentum, concentration and density equations
(2.1)–(2.5) do not involve the y-coordinate but do have additional right-hand-side
source-like terms involving the lower-order (n−1) or (n−2) moments:

∂zw
(n) = ∂tq

(n) + nv(n−1) , (3.2)

∂tv
(n) − ∂z(ν3∂zv

(n)) = ∂tm
(n)
2 + np(n−1) + n(n− 1)ν2v

(n−2) , (3.3)

∂tw
(n) − ∂z(ν3∂zw

(n)) + gδ(n) + ∂zp
(n) = ∂tm

(n)
3 + n(n− 1)ν2w

(n−2) , (3.4)

∂tc
(n) − ∂z(κ3∂zc

(n)) = ∂tγ
(n) + n(n− 1)κ2c

(n−2) , (3.5)

∂tδ
(n) + w(n)∂zρ

′ = α∂tc
(n) − ρ′∂tq(n) . (3.6)

It deserves comment that a right-hand-side lower-order term such as n(n− 1)ν2v
(n−2)

is absent until n > 2. The moments of the boundary conditions (2.6)–(2.7) merely
require (n) superscripts, with the exception of the free-surface tangential stress:

ν2∂zv
(n) = nν2w

(n−1) on z = H . (3.7)

It will be assumed that the discharge is transient and of small lateral extent centred
at y = 0. Consequently, the transient flux terms can be ignored, except for the
time-integrated jolts given to the n = 0 moments of volume

q(0)(z) =

∫ ∞
−∞

∫ ∞
−∞
∂tq(y, z, t)dt dy , (3.8)

lateral momentum m
(0)
2 (z), vertical momentum m

(0)
3 (z) and concentration γ(0)(z).

4. Long-time solutions
The next simplification is to remove the time coordinate t. From the n = 0 version

of equation (3.2) and the corresponding kinematic free-surface condition, we can
reproduce the conservation of volume result that the mean displacement of the free
surface exactly accommodates the total volume of water from the discharge:

ζ(0) ∼
∫ H

0

q(0)(z)dz = Hq̄(0) . (4.1)

An overbar is used to indicate the average value over the water depth.
On a time scale long compared with those for the transient discharging, viscous
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decay of internal waves or vertical mixing of the marked solute, the zero moments
of the perturbation lateral and vertical velocity will have dissipated to zero, the zero
moment of free-surface displacement will have become constant, the zero moment
of the perturbation pressure will have become hydrostatic, and the zero moments of
the marked concentration and the density perturbation will have become vertically
uniform :

v(0) ∼ 0 , w(0) ∼ 0 , p(0) ∼ gHq̄(0) + g(H − z)[αγ̄(0) − ρ′q(0)
] ,

c(0) ∼ γ̄(0) , δ(0) ∼ [αγ̄(0) − ρ′q(0)
] .

}
(4.2)

The asymptote v(0) ∼ 0 corresponds to antisymmetry about y = 0 for the laterally
outwards movement of the water in accommodating the discharge.

The long-time solutions for the zero moments provide the right-hand-side forcing
terms in the equations for the n = 1 first moments. The assumed small lateral extent
makes the first moments asymptotically zero with the exception of the pressure-driven
lateral velocity v(1), which we decompose into volume and buoyancy contributions:

v(1) ∼ H
{
q̄(0)V (z) + [αγ̄(0) − ρ′q(0)

][B(z) + ξV (z)]
}
, (4.3)

with

V (z) = g

∫ z

0

H − z′
ν3

dz′ > 0, (4.4)

and

B(z) = g

∫ z

0

[
H − z′

2H
− ξ
]
H − z′
ν3

dz′. (4.5)

At moderately large distances from the centreline y = 0, there is an outflow with
velocity profile V (z) to accommodate the excess volume of fluid and a buoyancy-
driven contribution with velocity profile B(z). The positive coefficient ξ is chosen
so that there is zero vertically integrated transverse volume flux associated with the
buoyancy-driven velocity profile B(z):∫ H

0

B(z′)dz′ = 0, i.e. ξH

∫ H

0

(H − z)2

ν3

dz =

∫ H

0

(H − z)3

2ν3

dz . (4.6)

The specifications (4.5), (4.6) imply that throughout the water column, the incom-
plete integral from the bed for the buoyancy-driven flow B(z) is non-negative:∫ z

0

B(z′)dz′ > 0 . (4.7)

It follows from equation (4.5) that as z increases from zero at the bed, so does B(z).
There is outwards buoyancy-driven flow which reaches its maximum not far above
the bed at z = H(1−2ξ). Upwards from that level B(z) decreases and changes sign in
the upper half of the water column to become an exactly compensating inflow near
the surface.

The long-time solutions for the zero and first moments provide the right-hand-side
forcing terms for the n = 2 second moments. From equation (3.2) it follows that the
second moment of the vertical velocity has the large-time asymptote

w(2) ∼ 2H
{
q̄(0) + ξ(αγ̄(0) − ρ′q(0)

)
}∫ z

0

V (z′)dz′ + 2H(αγ̄(0) − ρ′q(0)
)

∫ z

0

B(z′)dz′. (4.8)
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At large distances from the centreline y = 0, there is upwards movement associated
with the volume of the discharge and with any density excess. The velocity at the
free surface gives the rate of increase ∂tζ

(2) for the second moment of the free-surface
displacement:

∂tζ
(2) ∼ 2H

{
q̄(0) + ξ(αγ̄(0) − ρ′q(0)

)
}∫ H

0

V (z′)dz′. (4.9)

At large times, the vertical average of the second-moment equation (3.5) for
concentration is

∂tc̄
(2) ∼ 2κ̄2c̄

(0) . (4.10)

Thus, the lateral variance of the marked concentration grows diffusively with an
effective lateral diffusivity equal to the vertical average lateral eddy diffusivity κ̄2.

At large times, the vertical average of the second-moment equation (3.6) for the
density perturbation is

∂tδ̄
(2) ∼ 2g

{
q̄(0) + ξ(αγ̄(0) − ρ′q(0)

)
}∫ H

0

(−∂zρ′)
∫ z

0

V (z′)dz′dz

+2δ̄(0)

{
κ̄2 +

∫ H

0

(−∂zρ′)
∫ z

0

B(z′)dz′dz

}
. (4.11)

The first term can be associated with the movement of the free-surface displacement
as in equation (4.9). The remaining terms can be interpreted as a composite effective
lateral diffusivity. In particular, the stratification-induced lateral dispersion is given
by the double integral

D∗ =

∫ H

0

(−∂zρ′)
∫ z

0

B(z′)dz′dz . (4.12)

For stable stratification the signs of ∂zρ
′ and of the incomplete integral (4.7) of B(z′),

guarantee that D∗ is non-negative. Thus, the density disturbance necessarily disperses
more rapidly than marked solute. The contribution to D∗ is particularly strong for
density gradients ∂zρ

′ close to the level at which the buoyancy-driven velocity profile
B(z) changes sign.

5. Estimating the stratification-induced dispersion
If the eddy viscosity ν3 is constant, then equation (4.6) gives ξ = 3/8, i.e. the

buoyancy-driven transverse flow B(z) reaches its maximum at z = (1 − 2ξ)H = 1
4
H .

The formula (4.12) for the stratification-induced lateral dispersion takes the neat form

D∗ =
gH3

48ν̄3

∫ H

0

(−∂zρ′)
( z
H

)2
(
H − z
H

)(
3− 2

z

H

)
dz . (5.1)

If the density decreases linearly from the bed to the free surface, then

D∗ =
gH3[ρ′(0)− ρ′(H)]

320ν̄3

. (5.2)

The inverse dependence upon the vertical mixing ν3 of momentum is reminiscent of
the inverse dependence upon the vertical mixing κ3 of solute in the Taylor (1953)
shear dispersion mechanism, for which Aris (1956) developed the method of moments.
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For the Hudson estuary, figures 4 and 9 of Nepf & Geyer (1996) provide the
estimates

H = 10 m, ρ′(0)− ρ′(H) = 0.01, ν̄3 = 0.004 m2s−1 . (5.3)

These, together with the standard estimate g = 10 m s−2, lead to the prediction

D∗ = 78 m2s−1 . (5.4)

Fischer (1973) shows that the lateral turbulent diffusion can be estimated as being 2.25
times the vertical average ν̄3, i.e. about 0.009 m2 s−1. Thus, the predicted stratification-
induced lateral dispersion is about 8700 times the turbulent diffusivity. It is the
combination of weak vertical mixing and strong stratification that makes the disparity
so enormous.

A more realistic model for the turbulence is given by the von Kármán turbulence
model. The eddy viscosity has a parabolic depth profile:

ν3 = 6ν̄3(H − z)
( z
H

+ exp (−1/ε)
)
, (5.5)

in which the roughness height is assumed to be a tiny fraction exp (−1/ε) of the total
water depth H . The small parameter ε is typically about 0.11. The coefficient 6 is the
result of an approximation in which constant factors formally smaller than any power
of ε are ignored. To the same approximation, the coefficient ξ defined in equation
(4.6) has the value

ξ =
1

2
− ε

4(1− ε) , (5.6)

the buoyancy-driven velocity profile is

B(z) =
gH2

24ν̄3

{
1− 2

z

H
+

ε

1− ε

[
1 + ln

( z
H

+ exp (−1/ε)
)]}

, (5.7)

and the formula (4.12) for the stratification-induced lateral dispersion becomes

D∗ =
gH3

24ν̄3

∫ H

0

(−∂zρ′)
z

H

{
H − z
H

+
ε

1− ε ln
( z
H

+ exp (−1/ε)
)}

dz , (5.8)

If the density decreases linearly from the bed to the free surface, then

D∗ =
gH3[ρ′(0)− ρ′(H)]

144ν̄3

(
1− 3ε

2(1− ε)

)
. (5.9)

It is the low eddy viscosity near the bed that permits a faster buoyancy-driven flow
and a larger numerical coefficient 1/144 in equation (5.9) than the 1/320 in (5.2).

For the von Kármán turbulence model, the estimates (5.3) from Nepf & Geyer
(1996) leads to a prediction

D∗ = 141 m2 s−1, (5.10)

nearly 16 000 times the turbulent diffusivity.

6. Concluding remarks
When a discharge causes a density increase, there is a density-driven flow outwards

near the bed and a compensating inflow near the surface. At large times the velocity
profile for this lateral flow is controlled by the vertical mixing of momentum. There
is an associated vertical displacement downwards near the centre and upwards at
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large distances which perturbs any background stratification. The resulting density
perturbation spreads diffusively with a stratification-enhanced dispersion coefficient
which is proportional to the stratification but inversely proportional to the vertical
mixing of lateral momentum. Estimates for the Hudson estuary suggest that the
effective lateral diffusivity for a density anomaly is several orders of magnitude greater
than the lateral diffusivity for marked particles. This is in qualitative agreement with
observations made by Geyer of salinity and temperature disturbances in the Hudson.

I am grateful to the Gratia Houghton Rinehart Coastal Research Center for
financial support enabling me to visit the Woods Hole Oceanographic Institution and
to Rocky Geyer for pointing out this research problem so clearly.
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